Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.759
Filtrar
1.
Food Chem ; 448: 139157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569411

RESUMO

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Assuntos
Helicobacter pylori , Interleucina-17 , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Paladar , Digestão , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/imunologia , Linhagem Celular
2.
Biosens Bioelectron ; 257: 116303, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38663326

RESUMO

Discriminating secretory phenotypes provides a direct, intact, and dynamic way to evaluate the heterogeneity in cell states and activation, which is significant for dissecting non-genetic heterogeneity for human health studies and disease diagnostics. In particular, secreted microRNAs, soluble signaling molecules released by various cells, are increasingly recognized as a critical mediator for cell-cell communication and the circulating biomarkers for disease diagnosis. However, single-cell analysis of secreted miRNAs is still lacking due to the limited available tools. Herein, we realized three-plexed miRNA secretion analysis over four time points from single cells encapsulated in picoliter droplets with extreme simplicity, coupling vortexing-generated single-cell droplets with multiplexed molecular beacons. Notably, our platform only requires pipetting and vortexing steps to finish the assay setup within 5 min with minimal training, and customized software was developed for automatic data quantification. Applying the platform to human cancer cell lines and primary cells revealed previously undifferentiated heterogeneity and paracrine signaling underlying miRNA secretion. This platform can be used to dissect secretion heterogeneity and cell-cell interactions and has the potential to become a widely used tool in biomedical research.

3.
Microb Cell Fact ; 23(1): 115, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643109

RESUMO

BACKGROUND: The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible. RESULTS: In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters. CONCLUSIONS: PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Aminoácidos , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Sequência de Aminoácidos
4.
Sci Rep ; 14(1): 8994, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637678

RESUMO

Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Domínios Proteicos , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo
5.
Fungal Genet Biol ; 172: 103894, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657897

RESUMO

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.

6.
Sci Rep ; 14(1): 9457, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658627

RESUMO

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.


Assuntos
Anticorpos Monoclonais , Cricetulus , Receptor ErbB-2 , Células CHO , Animais , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Humanos , Separação Celular/métodos , Análise de Célula Única/métodos
7.
Biotechnol Biofuels Bioprod ; 17(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643207

RESUMO

BACKGROUND: The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers. The bulk production of lignocellulolytic enzymes by T. reesei not only relies on the efficient transcription of cellulase genes but also their efficient secretion after being translated. However, little attention has been paid to the functional roles of the involved secretory pathway in the high-level production of cellulases in T. reesei. Rab GTPases are key regulators in coordinating various vesicle trafficking associated with the eukaryotic secretory pathway. Specifically, Rab7 is a representative GTPase regulating the transition of the early endosome to the late endosome followed by its fusion to the vacuole as well as homotypic vacuole fusion. Although crosstalk between the endosomal/vacuolar pathway and the secretion pathway has been reported, the functional role of Rab7 in cellulase production in T. reesei remains unknown. RESULTS: A TrRab7 was identified and characterized in T. reesei. TrRab7 was shown to play important roles in T. reesei vegetative growth and vacuole morphology. Whereas knock-down of Trrab7 significantly compromised the induced production of T. reesei cellulases, overexpression of the key transcriptional activator, Xyr1, restored the production of cellulases in the Trrab7 knock-down strain (Ptcu-rab7KD) on glucose, indicating that the observed defective cellulase biosynthesis results from the compromised cellulase gene transcription. Down-regulation of Trrab7 was also found to make T. reesei more sensitive to various stresses including carbon starvation. Interestingly, overexpression of Snf1, a serine/threonine protein kinase known as an energetic sensor, partially restored the cellulase production of Ptcu-rab7KD on Avicel, implicating that TrRab7 is involved in an energetic adaptation to carbon starvation which contributes to the successful cellulase gene expression when T. reesei is transferred from glucose to cellulose. CONCLUSIONS: TrRab7 was shown to play important roles in T. reesei development and a stress response to carbon starvation resulting from nutrient shift. This adaptation may allow T. reesei to successfully initiate the inducing process leading to efficient cellulase production. The present study provides useful insights into the functional involvement of the endosomal/vacuolar pathway in T. reesei development and hydrolytic enzyme production.

8.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667300

RESUMO

Interleukin-6 (IL6) is a pleiotropic cytokine implicated in metabolic disorders and inflammation, yet its precise influence on insulin secretion and glucose metabolism remains uncertain. This study examined IL6 expression in pancreatic islets from individuals with/without diabetes, alongside a series of functional experiments, including siRNA silencing; IL6 treatment; and assessments of glucose uptake, cell viability, apoptosis, and expression of key ß-cell genes, which were conducted in both INS-1 cells and human islets to elucidate the effect of IL6 on insulin secretion. Serum levels of IL6 from Emirati patients with type 2 diabetes (T2D) were measured, and the effect of antidiabetic drugs on IL6 levels was studied. The results revealed that IL6 mRNA expression was higher in islets from diabetic and older donors compared to healthy or young donors. IL6 expression correlated negatively with PDX1, MAFB, and NEUROD1 and positively with SOX4, HES1, and FOXA1. Silencing IL6 in INS-1 cells reduced insulin secretion and glucose uptake independently of apoptosis or oxidative stress. Reduced expression of IL6 was associated with the downregulation of Ins, Pdx1, Neurod1, and Glut2 in INS-1 cells. In contrast, IL6 treatment enhanced insulin secretion in INS-1 cells and human islets and upregulated insulin expression. Serum IL6 levels were elevated in patients with T2D and associated with higher glucose, HbA1c, and triglycerides, regardless of glucose-lowering medications. This study provides a new understanding of the role of IL6 in ß-cell function and the pathophysiology of T2D. Our data highlight differences in the response to IL6 between INS-1 cells and human islets, suggesting the presence of species-specific variations across different experimental models. Further research is warranted to unravel the precise mechanisms underlying the observed effects of IL-6 on insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Interleucina-6 , Ilhotas Pancreáticas , Humanos , Interleucina-6/metabolismo , Interleucina-6/sangue , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Glucose/metabolismo , Insulina/metabolismo , Insulina/sangue , Ratos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Linhagem Celular , Idoso , Apoptose/efeitos dos fármacos
9.
Insects ; 15(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667387

RESUMO

Nymphs of Stephanitis svensoni (Drake) (Hemiptera: Tingidae) have numerous glandular setae on their dorsal abdomens. Chemical analysis of the exudates from these setae revealed the presence of 11 compounds, including aliphatic aldehydes, aliphatic ketones, and aromatic polyketides. Among them, 3-oxododecanal, 5-hydroxy-2-heptylchromanone, and 5-hydroxy-2-undecanylchromanone were identified for the first time in the family Tingidae. Previous research has suggested that secretions from nymphs of the genus Stephanitis, belonging to the family Tingidae, function as defensive substances against predators. The exudates of S. svensoni showed antibacterial activity against the Gram-positive bacterium Staphylococcus aureus. Antibacterial tests conducted using preparations of the 10 identified compounds showed antibacterial activity in 3-oxododecanal, 2,6-dihydroxyacetophenone, and 1-(2,6-dihydroxyphenyl)dodecan-1-one. In addition, antibacterial tests against the Gram-negative bacterium Escherichia coli showed activity in 2,6-dihydroxyacetophenone and 1-(2,6-dihydroxyphenyl)dodecan-1-one. Therefore, 2,6-dihydroxyacetophenone and 1-(2,6-dihydroxyphenyl)dodecan-1-one exhibited a wide antibacterial spectrum. Particularly, 1-(2,6-dihydroxyphenyl)dodecan-1-one, which showed antibacterial activity even at low concentrations, holds promise as lead drug compound.

10.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568811

RESUMO

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Assuntos
Proteínas de Bactérias , GTP Fosfo-Hidrolases , Legionella pneumophila , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Células HEK293 , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Vacúolos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
11.
Cell Rep ; 43(4): 114015, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568810

RESUMO

The type VI secretion system (T6SS), a widespread protein delivery apparatus, plays a role in bacterial competition by delivering toxic effectors into neighboring cells. Identifying new T6SS effectors and deciphering the mechanism that governs their secretion remain major challenges. Here, we report two orphan antibacterial T6SS effectors in the pathogen Pantoea agglomerans (Pa). These effectors share an N-terminal domain, Pantoea type six (PIX), that defines a widespread class of polymorphic T6SS effectors in Enterobacterales. We show that the PIX domain is necessary and sufficient for T6SS-mediated effector secretion and that PIX binds to a specialized Pa VgrG protein outside its C-terminal toxic domain. Our findings underline the importance of identifying and characterizing delivery domains in polymorphic toxin classes as a tool to reveal effectors and shed light on effector delivery mechanisms.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Pantoea/metabolismo , Ligação Proteica
12.
Cell Host Microbe ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640929

RESUMO

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.

13.
J Pharm Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641061

RESUMO

Sodium-phosphate transporter NPT4 (SLC17A3) is a membrane transporter for organic anionic compounds localized on the apical membranes of kidney proximal tubular epithelial cells and plays a role in the urinary excretion of organic anionic compounds. However, its physiological role has not been sufficiently elucidated because its substrate specificity is yet to be determined. The present study aimed to comprehensively explore the physiological substrates of NPT4 in newly developed Slc17a3-/- mice using a metabolomic approach. Metabolomic analysis showed that the plasma concentrations of 11 biological substances, including 3-indoxyl sulfate, were more than two-fold higher in Slc17a3-/- mice than in wild-type mice. Moreover, urinary excretion of 3-indoxyl sulfate was reduced in Slc17a3-/- mice compared to that in wild-type mice. The uptake of 3-indoxyl sulfate by NPT4-expressing Xenopus oocytes was significantly higher than that by water-injected oocytes. The calculated Km and Vmax values for NPT4-mediated 3-indoxyl sulfate uptake were 4.52 ± 1.18 mM and 1.45 ± 0.14 nmol/oocyte/90 min, respectively. In conclusion, the present study revealed that 3-indoxyl sulfate is a novel substrate of NPT4 based on the metabolomic analysis of Slc17a3-/- mice, suggesting that NPT4 regulates systemic exposure to 3-indoxyl sulfate by regulating its urinary excretion.

14.
Sci Total Environ ; : 172561, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641104

RESUMO

Environmental stressors such as salinity fluctuations can significantly impact the ecological dynamics of mussel beds. The present study evaluated the influence of hyposalinity stress on the detachment and survival of attached mussels by simulating a mussel farming model in a laboratory setting. Byssus production and mechanical properties of thread in response to varying salinity levels were assessed, and histological sections of the mussel foot were analyzed to identify the changes in the byssus secretory gland area. The results showed that hyposalinity stress (20 and 15 psu) led to a significant decrease in mussel byssus secretion, delayed initiation of new byssus production, and reduced plaque adhesion strength and breaking force of byssal threads compared to the control (30 psu) (p < 0.05). The complete suppression of byssal thread secretion in mussels under salinity conditions of 10 and 5 psu, leading to lethality, indicates the presence of a blockade in byssus secretion when mussels are subjected to significant physiological stressors. Histological analysis further demonstrated a decrease in the percentage of foot secretory gland areas in mussels exposed to low salinities. However, contrary to expectations, the study found that mussels did not exhibit marked detachment from ropes in response to the reduced salinity levels during one week of exposure. Hyposalinity stress exposure reduced the byssal secretion capacity and the mechanical properties of threads, which could be a cause for the detachment of suspension-cultured mussels. These results highlight the vulnerability of mussels to hyposalinity stress, which significantly affects their byssus mechanical performance.

15.
Cell Calcium ; 120: 102883, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38643716

RESUMO

The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.

16.
J Agric Food Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646906

RESUMO

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.

17.
Pest Manag Sci ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587094

RESUMO

BACKGROUND: The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS: Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION: Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.

18.
Life Sci ; 345: 122608, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574885

RESUMO

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Secreção de Insulina/genética , Linhagem Celular , Glucose/metabolismo , Canais de Cálcio/metabolismo
19.
J Ethnopharmacol ; 329: 118133, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580187

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica roots are a significant source of traditional medicines for various cultures around the northern hemisphere, from indigenous communities in North America to Japan. Among its many applications, the roots are used to treat type 2 diabetes mellitus; however, this application is not mentioned often. Ethnopharmacological studies have reported the use of A. japonica var. hirsutiflora, A. furcijuga, A. shikokiana, and A. keiskei to treat diabetes symptoms, and further reports have demonstrated the three angelica roots, i.e., A. japonica var. hirsutiflora, A. reflexa, and A. dahurica, exhibit insulin secretagogue activity. AIM OF THE STUDY: This study aimed to phytochemically characterize and compare angelica roots monographed in the European Pharmacopeia 11th, isolate major plant metabolites, and assess extracts and isolates' capability to modulate pancreatic ß-cell function. MATERIALS AND METHODS: Root extracts of Angelica archangelica, Angelica dahurica, Angelica biserrata, and Angelica sinensis were phytochemically profiled using liquid chromatography method coupled with mass spectrometry. Based on this analysis, simple and furanocoumarins were isolated using chromatography techniques. Extracts (1.6-50 µg/mL) and isolated compounds (5-40 µmol/L) were studied for their ability to modulate insulin secretion in the rat insulinoma INS-1 pancreatic ß-cell model. Insulin was quantified by the homogeneous time-resolved fluorescence method. RESULTS: Forty-one secondary metabolites, mostly coumarins, were identified in angelica root extracts. A. archangelica, A. dahurica, and A. biserrata root extracts at concentration of 12.5-50 µg/mL potentiated glucose-induced insulin secretion, which correlated with their high coumarin content. Subsequently, 23 coumarins were isolated from these roots and screened using the same protocol. Coumarins substituted with the isoprenyl group were found to be responsible for the extracts' insulinotropic effect. CONCLUSIONS: Insulinotropic effects of three pharmacopeial angelica roots were found, the metabolite profiles and pharmacological activities of the roots were correlated, and key structures responsible for the modulation of pancreatic ß-cell function were identified. These findings may have implications for the traditional use of angelica roots in treating diabetes. Active plant metabolites may also become lead structures in the search for new antidiabetic treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...